Optimal Tracing of Viscous Shocks in Solutions of Viscous Conservation Laws

نویسندگان

  • Wen Shen
  • Mee Rea Park
چکیده

This paper contains a qualitative study of a scalar conservation law with viscosity: ut + f(u)x = uxx . We consider the problem of identifying the location of viscous shocks, thus obtaining an optimal finite dimensional description of solutions to the viscous conservation law. We introduce a nonlinear functional whose minimizers yield the viscous travelling profiles which “optimally fit” the given solution. We prove that, outside an initial time interval and away from times of shock interactions, our functional remains very small, i.e. the solution can be accurately represented by a finite number of viscous travelling waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscous Shock Wave Tracing, Local Conservation Laws, and Pointwise Estimates by Tai-ping Liu and Shih-hsien Yu

We introduce a new approach to decompose a system of viscous conservation laws with respect to each characteristic wave structures. Under this new decomposition, the global wave interactions of the system are reduced to coupling of nonlinear waves around constant states outside shock region and a scalar conservation law in the shock region to determine the behavior of local internal shock layer...

متن کامل

Sparse + low-energy decomposition for viscous conservation laws

For viscous conservation laws, solutions contain smooth but high-contrast features, which require the use of fine grids to properly resolve. On coarse grids, these high-contrast jumps resemble shocks rather than their true viscous profiles, which could lead to issues in the numerical approximation of their underlying dynamics. In many cases, the equations of motion emit traveling wave solutions...

متن کامل

Hopf Bifurcation From Viscous Shock Waves

Using spatial dynamics, we prove a Hopf bifurcation theorem for viscous Lax shocks in viscous conservation laws. The bifurcating viscous shocks are unique (up to time and space translation), exponentially localized in space, periodic in time, and their speed satisfies the Rankine–Hugoniot condition. We also prove an ”exchange of spectral stability” result for superand subcritical bifurcations, ...

متن کامل

Relative entropy applied to the stability of viscous shocks up to a translation for scalar conservation laws

We consider inviscid limits to shocks for viscous scalar conservation laws in one space dimension, with strict convex fluxes. We show that we can obtain sharp estimates in L, for a class of large perturbations. Those perturbations can be chosen big enough to destroy the viscous layer. This shows that the fast convergence to the shock does not depend on the fine structure of the viscous layers. ...

متن کامل

Fractional Rate of Convergence for Viscous Approximation to Nonconvex Conservation Laws

This paper considers the viscous approximations to conservation laws with nonconvex flux function. It is shown that if the entropy solutions are piecewise smooth, then the rate of L1convergence is a fractional number in (0.5, 1]. This is in contrast to the corresponding result for the convex conservation laws. Numerical experiments indicate that the theoretical prediction for the convergence ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2006